
Implementation of Artificial neural network on Zynq-7000 SoC

Project Report

Submitted in partial fulfilment of the course EEE F366: Laboratory Project

By
Parth Kalgaonkar

ID No.: 2016A3PS0268P

Under the supervision of
Dr. Meetha V. Shenoy

Birla Institute of Technology and Science, Pilani, Pilani Campus
December 8, 2019

Contents

1 Introduction 2

2 Implementation of a single neuron 2
2.1 Fixed point represention of numbers . 2
2.2 Implementation of activation function . 2

2.2.1 Taylor series expansion . 3
2.2.2 Elliott approximations . 3
2.2.3 Look-Up table based approach . 3

3 Integration of all neurons into complete network 4
3.1 Processing system and system level signals . 4
3.2 Weights and bias memory . 6
3.3 Control logic . 6

4 Implementation of software interface 6
4.1 Implementation of the UART interface . 7

5 Levenberg-Marquardt training on Zynq PS 7
5.1 A brief Introduction to LM training . 7
5.2 Implementation of LM algorithm on Zynq PS . 9

6 Results 10

7 Scope for future improvements 10

List of Figures

1 Architecture of a single neuron . 2
2 Elliott approximation vs tanh . 3
3 Block diagram of neural network . 5
4 Typical application without training . 8
5 Flowchart for the training algorithm . 9

List of Tables

1 Resource utilization by neural network . 10
2 Time taken by neural network in various processes . 10
3 Power report summary . 10

1

1 Introduction

The need for localization of objects within closed environments is extremely widespread. Ultrasonic
beacons are typically used for such applications. Translation of beacon data to spatial co-ordinates must
be done in real time. Neural networks are used to approximate the non-linear relationship between delays
and postions. Such a network must be implemented on a low power system with very low latency for
real time application. An FPGA was chosen to implement the neural net. Additionally such systems
must adapt to changing environments. To enable this, training must also be done on the board.

A Xilinx 7000 series SoC was chosen for this application. The on board DSP resources were used to
implement multiplication operation on the programmable logic. The multiple available BRAM resource
were also used to implement the tansigmoid transfer functions.

2 Implementation of a single neuron

Figure 1: Architecture of a single neuron

2.1 Fixed point represention of numbers

The inputs, weights and biases of the network are real numbers and are represented in the hardware
using fixed point notation. The number of bits used has the most impact on the accuracy of the system.

Inputs and outputs can be normalized to values between −1 and 1. Representation of these is done
in the hardware using 11 bit 2’s complement numbers with 10 bits for fractional part and 1 sign bit.
Whole number part is not required as inputs and outputs are assumed to be normalized.

Weights and biases can be any real numbers. Thus they are represented using 16 bit 2’s complement
numbers with 8 bits for fractional part.

Component Resolution
Inputs/Outputs 1/1024
Weights/Biases 1/256

2.2 Implementation of activation function

The first layer of the network uses the Tansigmoid activation function.

tansig(x) = tanh(x) =
ex − e−x

ex + e−x
(1)

2

Implementing this on hardware poses a significant challenge as analytical computation would be
extremely slow and hardware intensive. There are three methods that are usually used to implement
this activation function. [3]

2.2.1 Taylor series expansion

The taylor series expansion for eu can be given as:

eu = 1 + u+
u2

2!
+
u3

3!
· · ·+ un

n!
+ · · · (2)

Some implementations use the first few terms of the taylor series expansion to approximate tansig.
An implementation using the first 5 terms is proposed by Koyuncu[3]. Such an implementation, however,
is extremely complex and redundant for a simple system.

2.2.2 Elliott approximations

Elliott-93 approximation is a signum function that ranges between −1 and 1 and is given by:

tansige93(x) =
x

1 + |x|
(3)

Another approximation is the Elliott-2 approximation which was developed from Elliott-93 and is
given by:

tansige2(x) = sgn(x) ∗ x2

1 + x2
(4)

Here sgn(x) is the signum function.
Both of these approximations yield poor results as can be seen from the following comparison between

the approximations and the exact function.

Figure 2: Elliott approximation vs tanh

Additionally, both approximations flatten out only for much larger inputs. Thus, their behavior is
not as local as tansig.

2.2.3 Look-Up table based approach

Any function can be easily represented as a look-up table (LUT) of function values at various sample
points. The LUT can then be stored in a BRAM. Then finding the value of the activation function
becomes as simple as reading a value from the RAM at the specific address. The number of samples
must be decided as this determines the size of the RAM required.

Too few samples will lead to very high sampling noise. Too many samples will make the size of
the RAM required very high and implementaion on the limited resources on the board will become

3

impossible. Thus it is very important to find the optimum number of samples. A method for this is
suggested by Himavathi et.al.[2]

1. Let n be the number bits in output. In our case we have 10 fractional bits in the output (See 2.1).

∴ n = 10 (5)

2. Determine the range of samples required to cover full output range.

ymin = −1 + 2−n

=
−1023

1024
ymax = 1− 2−n

=
1023

1024

∴ xmin = tanh−1(ymin)

= tanh−1(
−1023

1024
) ≈ −3.8121

∴ xmax = −xmin ≈ 3.8121

(6)

3. Determine the point of maximum slope.

d tanh(x)

dx
= sech2(x) (7)

The slope is maximum at x = 0 and is equal to 1.

4. Smallest change in output is given by δy = 2−10. The smallest step in input δx to cause a change
of δy in output at the point of maximum slope is given by:

δx =
δy

d tanh(x)

dx
|x=0

=
1

1024
(8)

5. Number of samples can now be calculated as:

(LUT)min =
xmax − xmin

δx
≈ 7807 (9)

6. Number of bits of fractional part is determined by δx. In this case, 10 bits of fractional part are
enough for a step size of 2−10.

7. Atleast 13 bits are required to address a memory with 7807 locations. This design uses a memory
with 14 bit addresses (ie 16384 locations) to allow for increase in the resolution of outputs in the
future.

3 Integration of all neurons into complete network

This section describes the complete structure of the network on the FPGA. Fig 3 shows a top level block
diagram of the system.

3.1 Processing system and system level signals

The Processing (PS) system is responsible for training the network on board when required. The capa-
bilities of the hardware on the programmable logic (PL) are exposed to the outside world via UART.
The PS recieves all data and control from UART and takes the necessary actions. The system level clock
and reset signals are also provided by the PS. Functioning of PS is discussed further in 4

4

in
it_

3_
10

_0

in
it_

3_
10

_v
1.

0
(P

re
-P

ro
du

ct
io

n)

S
00

_A
X

I

w
0[

47
:0

]

b0
[1

5:
0]

w
1[

47
:0

]

b1
[1

5:
0]

w
2[

47
:0

]

b2
[1

5:
0]

w
3[

47
:0

]

b3
[1

5:
0]

w
4[

47
:0

]

b4
[1

5:
0]

w
5[

47
:0

]

b5
[1

5:
0]

w
6[

47
:0

]

b6
[1

5:
0]

w
7[

47
:0

]

b7
[1

5:
0]

w
8[

47
:0

]

b8
[1

5:
0]

w
9[

47
:0

]

b9
[1

5:
0]

s0
0_

ax
i_

ac
lk

s0
0_

ax
i_

ar
es

et
n

ne
ur

on
_1

ne
ur

on
_v

1_
0

pa
ra

m
s[

32
:0

]

w
ei

gh
ts

[4
7:

0]

ba
se

[1
5:

0]

cl
k

st
ar

t

y[
10

:0
]

do
ne

ne
ur

on
_2

ne
ur

on
_v

1_
0

pa
ra

m
s[

32
:0

]

w
ei

gh
ts

[4
7:

0]

ba
se

[1
5:

0]

cl
k

st
ar

t

y[
10

:0
]

do
ne

in
it_

10
_2

_0

in
it_

10
_2

_v
1.

0
(P

re
-P

ro
du

ct
io

n)

S
00

_A
X

I
w

0[
15

9:
0]

b0
[1

5:
0]

w
1[

15
9:

0]

b1
[1

5:
0]

s0
0_

ax
i_

ac
lk

s0
0_

ax
i_

ar
es

et
n

ne
ur

on
_3

ne
ur

on
_v

1_
0

pa
ra

m
s[

32
:0

]

w
ei

gh
ts

[4
7:

0]

ba
se

[1
5:

0]

cl
k

st
ar

t

y[
10

:0
]

do
ne

ax
i_

m
em

_i
nt

er
co

n

A
X

I I
nt

er
co

nn
ec

t

S
00

_A
X

I

M
00

_A
X

I

M
01

_A
X

I

M
02

_A
X

I

M
03

_A
X

I

M
04

_A
X

I

M
05

_A
X

I

M
06

_A
X

I

M
07

_A
X

I

A
C

LK

A
R

E
S

E
T

N
[0

:0
]

S
00

_A
C

LK

S
00

_A
R

E
S

E
T

N
[0

:0
]

M
00

_A
C

LK

M
00

_A
R

E
S

E
T

N
[0

:0
]

M
01

_A
C

LK

M
01

_A
R

E
S

E
T

N
[0

:0
]

M
02

_A
C

LK

M
02

_A
R

E
S

E
T

N
[0

:0
]

M
03

_A
C

LK

M
03

_A
R

E
S

E
T

N
[0

:0
]

M
04

_A
C

LK

M
04

_A
R

E
S

E
T

N
[0

:0
]

M
05

_A
C

LK

M
05

_A
R

E
S

E
T

N
[0

:0
]

M
06

_A
C

LK

M
06

_A
R

E
S

E
T

N
[0

:0
]

M
07

_A
C

LK

M
07

_A
R

E
S

E
T

N
[0

:0
]

ne
ur

on
_0

ne
ur

on
_v

1_
0

pa
ra

m
s[

32
:0

]

w
ei

gh
ts

[4
7:

0]

ba
se

[1
5:

0]

cl
k

st
ar

t

y[
10

:0
]

do
ne

lo
c_

in
te

rf
ac

e_
0

lo
c_

in
te

rf
ac

e_
v1

.0
 (

P
re

-P
ro

du
ct

io
n)

X
00

_A
X

I

X
01

_A
X

I

X
02

_A
X

I

Y
00

_A
X

I

Y
01

_A
X

I

C
O

N
_A

X
I

co
n_

do
ne

cu
rr

_s
ta

rt

x0
[1

0:
0]

x1
[1

0:
0]

x2
[1

0:
0]

y0
[1

0:
0]

y1
[1

0:
0]

cu
rr

_d
on

e

co
un

te
r[

7:
0]

y0
0_

ax
i_

ac
lk

y0
0_

ax
i_

ar
es

et
n

x0
1_

ax
i_

ac
lk

x0
1_

ax
i_

ar
es

et
n

x0
2_

ax
i_

ac
lk

x0
2_

ax
i_

ar
es

et
n

y0
1_

ax
i_

ac
lk

y0
1_

ax
i_

ar
es

et
n

x0
0_

ax
i_

ac
lk

x0
0_

ax
i_

ar
es

et
n

co
n_

ax
i_

ac
lk

co
n_

ax
i_

ar
es

et
n

xl
co

nc
at

_0

C
on

ca
t

In
0[

0:
0]

In
1[

0:
0]

In
2[

0:
0]

In
3[

0:
0]

In
4[

0:
0]

In
5[

0:
0]

In
6[

0:
0]

In
7[

0:
0]

In
8[

0:
0]

In
9[

0:
0]

do
ut

[9
:0

]
ne

ur
on

_4

ne
ur

on
_v

1_
0

pa
ra

m
s[

32
:0

]

w
ei

gh
ts

[4
7:

0]

ba
se

[1
5:

0]

cl
k

st
ar

t

y[
10

:0
]

do
ne

D
D

R

F
IX

E
D

_I
O

ne
ur

on
_l

in
ea

r_
1

ne
ur

on
_l

in
ea

r_
v1

_0

pa
ra

m
s[

10
9:

0]

w
ei

gh
ts

[1
59

:0
]

ba
se

[1
5:

0]

cl
k

st
ar

t

y[
10

:0
]

do
ne

xl
co

nc
at

_3

C
on

ca
t

In
0[

0:
0]

In
1[

0:
0]

do
ut

[1
:0

]

ut
il_

re
du

ce
d_

lo
gi

c_
1

U
til

ity
 R

ed
uc

ed
 L

og
ic

O
p1

[1
:0

]
R

es

pr
oc

es
si

ng
_s

ys
te

m
7_

0

Z
Y

N
Q

7
P

ro
ce

ss
in

g
S

ys
te

mP
T

P
_E

T
H

E
R

N
E

T
_0

D
D

R

F
IX

E
D

_I
O

U
S

B
IN

D
_0

M
_A

X
I_

G
P

0

T
T

C
0_

W
A

V
E

0_
O

U
T

T
T

C
0_

W
A

V
E

1_
O

U
T

T
T

C
0_

W
A

V
E

2_
O

U
T

M
_A

X
I_

G
P

0_
A

C
LK

F
C

LK
_C

LK
0

F
C

LK
_R

E
S

E
T

0_
N

xl
co

nc
at

_1

C
on

ca
t

In
0[

10
:0

]

In
1[

10
:0

]

In
2[

10
:0

]

do
ut

[3
2:

0]

xl
co

nc
at

_2

C
on

ca
t

In
0[

10
:0

]

In
1[

10
:0

]

In
2[

10
:0

]

In
3[

10
:0

]

In
4[

10
:0

]

In
5[

10
:0

]

In
6[

10
:0

]

In
7[

10
:0

]

In
8[

10
:0

]

In
9[

10
:0

]

do
ut

[1
09

:0
]

rs
t_

pr
oc

es
si

ng
_s

ys
te

m
7_

0_
10

0M

P
ro

ce
ss

or
 S

ys
te

m
 R

es
et

sl
ow

es
t_

sy
nc

_c
lk

ex
t_

re
se

t_
in

au
x_

re
se

t_
in

m
b_

de
bu

g_
sy

s_
rs

t

dc
m

_l
oc

ke
d

m
b_

re
se

t

bu
s_

st
ru

ct
_r

es
et

[0
:0

]

pe
rip

he
ra

l_
re

se
t[0

:0
]

in
te

rc
on

ne
ct

_a
re

se
tn

[0
:0

]

pe
rip

he
ra

l_
ar

es
et

n[
0:

0]

ne
ur

on
_5

ne
ur

on
_v

1_
0

pa
ra

m
s[

32
:0

]

w
ei

gh
ts

[4
7:

0]

ba
se

[1
5:

0]

cl
k

st
ar

t

y[
10

:0
]

do
ne

ne
ur

on
_l

in
ea

r_
0

ne
ur

on
_l

in
ea

r_
v1

_0

pa
ra

m
s[

10
9:

0]

w
ei

gh
ts

[1
59

:0
]

ba
se

[1
5:

0]

cl
k

st
ar

t

y[
10

:0
]

do
ne

ut
il_

re
du

ce
d_

lo
gi

c_
0

U
til

ity
 R

ed
uc

ed
 L

og
ic

O
p1

[9
:0

]
R

es
ne

ur
on

_6

ne
ur

on
_v

1_
0

pa
ra

m
s[

32
:0

]

w
ei

gh
ts

[4
7:

0]

ba
se

[1
5:

0]

cl
k

st
ar

t

y[
10

:0
]

do
ne

ne
ur

on
_8

ne
ur

on
_v

1_
0

pa
ra

m
s[

32
:0

]

w
ei

gh
ts

[4
7:

0]

ba
se

[1
5:

0]

cl
k

st
ar

t

y[
10

:0
]

do
ne

ne
ur

on
_7

ne
ur

on
_v

1_
0

pa
ra

m
s[

32
:0

]

w
ei

gh
ts

[4
7:

0]

ba
se

[1
5:

0]

cl
k

st
ar

t

y[
10

:0
]

do
ne

ne
ur

on
_9

ne
ur

on
_v

1_
0

pa
ra

m
s[

32
:0

]

w
ei

gh
ts

[4
7:

0]

ba
se

[1
5:

0]

cl
k

st
ar

t

y[
10

:0
]

do
ne

Figure 3: Block diagram of neural network

5

3.2 Weights and bias memory

These act as buffers, one for each layer, where values of weights and biases for the layer are stored. At
the beginning of every transaction, each neuron reads these values into it’s local registers. These blocks
are connected to the PS through an AXI Full (memory-mapped) interface. Weights and biases can be
written or read in burst for faster operation through DMA resources.

3.3 Control logic

This block acts as the interface between the PS and the network on the PL. The block is made up of 6
AXI interfaces as described below.

1. X00 AXI, X01 AXI and X02 AXI are three AXI-Full interfaces for each of the three inputs with
a maximum burst length of 16. Starting at the base address for each interface, 11 bit inputs (sign
extended to 32-bits) can be written in consecutive memory locations. Inputs for one transaction
should be written at the same offsets.

2. Y00 AXI and Y01 AXI are two AXI-Full interfaces for each of the two outputs. Outputs of the
network are not sign extened but are padded with zeroes to make the output size 32 bits. Read
bursts can be of maximum length 16.

3. CON AXI is an AXI-Lite interface for control information. It exposes functionality in form of two
32-bit registers.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

S

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LEN

CON AXI slv reg0: Control register (Base + 0x00)

First is a control register. only 5 bits of this register are significant. LEN is the number of trans-
actions to be done. S is the start bit. Writing a 1 to this bit starts the operation of the neural
network. Programmer must make sure that values are written in the X00, X01, and X02 interfaces
before starting the neural net. Any pending transactions are silently terminated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DONE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CON AXI slv reg1: Status register (Base + 0x04)

Status register is the second 32 bit register. Bit 0 in this register is set to 1 when the last burst of
transactions has completed. Other bits can be used to signinfy other status data in future.

4 Implementation of software interface

The software running on the Processing system has 3 responsibilities.

1. Getting input data from UART, sending it to the neural network, getting the network outputs back
and sending it back through the UART interface in form of UTF-8 encoded decimal numbers.

6

2. Setting the weights of the network layers to values recieved from UART.

3. Training the neural network using the Levenberg-Marquardt training algorithm to a given set of
inputs and targets.

4.1 Implementation of the UART interface

Every transaction on the UART interface is initiated by the controlling device. The system and Zynq
PS act as a slave.

Every transaction begins with a single integer (in UTF-8 encoding) to indicate the mode of operation.
Currently, the following modes have been implemented.

Mode ’-1’: Update the weights for layer 1. The system expects 40 whitespace seperated integers to
follow. The system will wait for these silently and indefinitely.

Mode ’-2’: Update the weights for layer 2. The system expects 22 whitespace seperated integers to
follow. The system will wait for these silently and indefinitely.

Mode ’0’: Retrain the network to a new set of inputs and targets. This is discussed in greater detail
in section 5

Default : Give a set of inputs for the network to compute. The value of the command word is assumed
to be the number of inputs to be computed. This number must be positive and less than 16. The
system then expects those inputs in form of triplets of comma seperated integers (in the format
" %d, %d, %d\n").

Figure 4 shows a UML diagram that describes a typical application where the network has been
pre-trained:

5 Levenberg-Marquardt training on Zynq PS

5.1 A brief Introduction to LM training

The Levenberg-Marquardt algorithm provides a numerical solution to minimizing a non-linear function.
Most commonly used method for neural networks training is the steepest descent algorithm, also known
as the error backpropagation algorithm(EBP). It is widely known for being inefficient due to it’s slow
convergence.

Other second order algorithms such as the Gauss-Newton algorithm improve upon the speed of EBP
by more This method is only valid when the quadratic approximation of the error function is valid.
Otherwise, GN is mostly divergent.

The basic idea of the Levenberg-Marquardt algorithm is to use a combined training process around a
complex error surface. Far away from the minima, the algorithm behaves similar to the steepest descent
algorithm. But as it approaches the target, it approximately becomes the GN algorithm which can result
in a great speed up in convergence.[1]

e =

e1,1
e1,2

...
e1,M

...
eP,M

(10)

where ei,j is the error in the ith output in the jth set of input parameters and targets.
The algorithm functionality is based on the Jacobian matrix like Gauss-Newton. The jacobian matrix

is given by:

7

Figure 4: Typical application without training

J =

∂e1,1

∂W1

∂e1,1

∂W2
· · ·

∂e1,1

∂WN
∂e1,2

∂W1

∂e1,2

∂W2
· · ·

∂e1,2

∂WN
...

...
...

∂eP,M

∂W1

∂eP,M

∂W2
· · ·

∂eP,M

∂WN

(11)

where N is the total number of weights and biases in the neural net.
The weight update equation then becomes

Wk+1 = Wk − (JTJ + µI)−1JTe (12)

where Wk is a column vector of all weights at the kth iteration.
When the combination coefficient µ is very small, equation 12 approaches the weight update equation

for the Gauss-Newton method. When µ is very large, it approximates the EBP algorithm with the
equivalent learning rate α given by:

α =
1

µ
(13)

The combination coefficient µ is adapted as the training progresses. For every successful iteration, µ
is decreased so the system approaches a Gauss-Newton approximation and vice-versa.

8

Figure 5: Flowchart for the training algorithm

5.2 Implementation of LM algorithm on Zynq PS

In order to avoid communication overheads between the PS and the PL during the training phase, a
digital twin of the neural network is created using software. This twin reads the initial weights and biases
back from the neural network. Training is performed on the twin and the final values of the weights are
then written back to the hardware on the PL.

After the initial command of 0, the system expects an integer from UART to indicate the number
of data points for which training is to be performed. Following this, the training inputs and targets are
expected as quintuplets of comma seperated values in the form " %d, %d, %d, %d, %d". Here, the last
two integers are the targets and the first three integers are the inputs. All inputs and targets must be
scaled up by a factor of 1024 and rounded down to the nearest integers.

Any values greater than 1023 and less than -1024 are invalid and result in undefined behaviour as
inputs and targets are assumed to be normalized to a value between -1 and 1.

All neurons are simulated in software as structures containing their respective weights. These neu-
rons are used first in a forward propagation to compute each activation which is required in the back-
propagation stage. The backpropagation phase computes the jacobian term for each weight of the
neurons. These terms are then collected to form the Jacobian matrix.

An open source library by Martensson [4] is used for the Matrix operations on the Zynq PS. This
is a wrapper of the LAPACK library [5] designed keeping the low memory requirements of embedded
systems in mind. It typically works upto 7 times faster compared to traditional matrix computational
systems such as Octave.

9

6 Results

Table 1 shows the resource utilization by the neural network on the programmable logic. Table 2 reports
the time taken by the neural network and the PS interface for various activities. Table 3 reports the
expected power consumption of various design components.

Resource Utilization Available Utilization(%)
FF 4939 106400 4.641917
LUT 4085 53200 7.678571
Memory LUT 167 17400 0.9597701
BRAM 59 140 42.142857
DSP48 12 220 5.4545455
BUFG 1 32 3.125

Table 1: Resource utilization by neural network

Process Time taken
Weight update (Layer 1) ≈15ms
Weight update (Layer 2) ≈8ms
Training (verbose) ≈2s
Training (non-verbose) ≈1.7s
Simulation (single) ≈1.5ms
Simulation (burst of 15) ≈28ms

Table 2: Time taken by neural network in various processes

On-Chip Power (W) Used Utilization (%)
Clocks 0.016 3 —
Slice Logic 0.017 10623 —

LUT as Logic 0.016 3918 7.36
Register <0.001 4939 4.64
CARRY4 <0.001 174 1.31
LUT as Distributed RAM <0.001 99 0.57
F7/F8 Muxes <0.001 288 0.54
LUT as Shift Register <0.001 68 0.39
Others 0.000 342 —

Signals 0.034 8215 —
Block RAM 0.064 59 42.14
DSPs 0.013 12 5.45
PS7 1.529 1 —
Static Power 0.167 — —
Total 1.840 — —

Table 3: Power report summary

7 Scope for future improvements

1. Using more of the available Multiplication resources, design of single neurons can be completely
pipelined in order to improve performance many fold.

2. PS interface can be improved to use DMA resources so that AXI burst functionality can be better
utilized.

3. PS interface can be modified to accept interrupts from the network. The current interrupt sent by
the neural network is ignored in favour of simpler design.

4. AXI slave interface can be modified to allow for much larger bursts of data.

10

References

[1] Yu Hao and BM. Wilamowski. Levenberg-marquardt training. Industrial electronics handbook 5, 12,
2011.

[2] S. Himavathi, D. Anitha, and A. Muthuramalingam. Feedforward neural network implementation
in fpga using layer multiplexing for effective resource utilization. IEEE Transactions on Neural
Networks, 18(3):880–888, May 2007.

[3] Ismail Koyuncu. Implementation of high speed tangent sigmoid transfer function approximations for
artificial neural network applications on FPGA. Advances in Electrical and Computer Engineering,
18:79–86, Aug 2018.

[4] Daniel Martensson. EmbeddedLAPACK. github.com/DanielMartensson/EmbeddedLapack, Feb
2019.

[5] Lapack team. LAPACK. www.netlib.org/lapack, 2000 - 2019.

11

